Утверждён RU.31920409.00010-01 91-ЛУ

устройство частотной разгрузки "ПАРМА УАЧР 12"

Описание протоколов обмена

RU.31920409.00010-01 91

ООО "ПАРМА", Санкт-Петербург

Содержание

1 Реализация протокола информационного обмена MODBUS	5
1.1 Уровень связи	5
1.2 Функции	5
1.3 Сообщения об ошибках	6
1.4 Нормализация данных	6
1.5 Регистры конфигурации	7
1.6 Регистры, доступные только для чтения	13
1.7 Поясняющие примеры	15
2 Параметры протокола МЭК 60870-5-101, поддерживаемые УАЧР	17
2.1 Основные положения	17
2.2 Система или устройство	17
2.3 Конфигурация сети	17
2.4 Физический уровень	17
2.5 Канальный уровень	
2.6 Прикладной уровень	18
2.7 Основные прикладные функции	

Версия: 2

Настоящий документ содержит описания протоколов обмена, поддерживаемых устройством частотной разгрузки "ПАРМА УАЧР 12" PA1.017.000 (далее — УАЧР): реализацию протокола информационного обмена MODBUS и набор опций и параметров протокола МЭК 60870-5-101.

1 Реализация протокола информационного обмена MODBUS

1.1 Уровень связи

- 1.1.1 В рамках протокола УАЧР выполняет роль подчинённого (slave) устройства, то есть может только отвечать на запросы от управляющего устройства (master).
- 1.1.2 Поддерживаются как режим MODBUS RTU, так и режим MODBUS ASCII. В режиме MODBUS RTU допустим один из следующих форматов передачи байта:
 - 8E1 восемь бит данных, бит чётности (Even), один стоп-бит;
 - 8O1 восемь бит данных, бит нечётности (Odd), один стоп-бит;
 - 8N2 восемь бит данных, без бита чётности (None), два стоп-бита;

В режиме MODBUS ASCII допустим один из следующих форматов передачи байта:

- 7E1 семь бит данных, бит чётности (Even), один стоп-бит;
- 7O1 семь бит данных, бит нечётности (Odd), один стоп-бит;
- 7N2 семь бит данных, без бита чётности (None), два стоп-бита.
- 1.1.3 Скорость приёма/передачи данных выбирается из ряда: 9600, 19200, 38400, 57600 бол.
- 1.1.4 При конфигурации УАЧР может быть присвоен произвольный адрес MODBUS из диапазона от 1 до 247. Допустимо использование широковещательного адреса (=0), например, для синхронизации часов. Широковещательные запросы выполняются без ответного сообщения.
 - 1.1.5 Конфигурация УАЧР по умолчанию:

– режим – MODBUS RTU;

− скорость приёма/передачи данных
 − формат байта
 − 8E1;

- адрес канального уровня -1 (один).

1.2 Функции

1.2.1 Поддерживаемые функции протокола MODBUS приведены в таблице 1.

Таблица 1 – Функции протокола MODBUS

Код	Назначение	
03 (0x03)	чтение регистров конфигурации	(read holding registers)
04 (0x04)	чтение регистров, доступных только для чтения	(read input registers)
06 (0x06)	запись в регистр конфигурации	(write single register)
08 (0x08)	диагностика, только подфункция 0 (эхо)	(diagnostics)
16 (0x10)	запись в регистры конфигурации	(write multiple registers)

1.2.2 Регистры конфигурации и регистры "только для чтения" имеют раздельные адресные пространства.

1.3 Сообщения об ошибках

1.3.1 Значения кодов сообщений об ошибках приведены в таблице 2.

Таблица 2 – Значения кодов сообщений

Код	Значение	Описание причины возникновения
01	Недопустимая функция	Запрашиваемая функция не поддерживается
		УАЧР.
02	Недопустимый адрес данных	Запрос выходит за регламентированное адресное
		пространство регистров.
03	Недопустимое значение данных	Запрошенное количество регистров больше
		допустимого максимума;
		в запросе пропущены некоторые поля или их
		значения некорректны или их длина не
		соответствует протоколу.
04	Ошибка выполнения запроса	Доступ к регистру заблокирован паролем;
		доступ к регистру возможен только после вывода
		УАЧР из работы (программной остановки);
		доступ к регистру заблокирован сигналом на
		дискретном входе;
		доступ к регистру заблокирован по причине
		пуска/срабатывания функции.

1.4 Нормализация данных

1.4.1 Передаваемые параметры приводятся к нормализованному виду: 16-битным целочисленным значениям согласно таблицам 3 и 4.

Таблица 3 – Двоичные коды, используемые для представления значений со знаком

	Значение величины со знаком									
	-32768 -327671 0 1 32766 32767 NaN ¹									
Код1	-	0x0000		0x7FFE	0x7FFF	0x8000		0xFFFD	0xFFFE	0xFFFF
Код2	-	0x8001		0xFFFF	0x0000	0x0001		0x7FFE	0x7FFF	0x8000

Таблица 4 – Двоичные коды, используемые для представления значений без знака

	_	Значение величины без знака								
	0	1		32767	32768	32769		65534	65535	NaN ¹
Код3	0x0000	0x0001		0x7FFF	0x8000	0x8001		0xFFFE	_	0xFFFF

Для представления информации в регистрах конфигурации используются кодировки "Код1" и "Код3" (функции протокола MODBUS: 0x03, 0x06, 0x10). Для представления информации в регистрах, доступных только для чтения, используются кодировки "Код2" и "Код3" (функции протокола MODBUS: 0x04).

¹ NaN (Not a Number) – обозначение недействительного значения.

1.5 Регистры конфигурации

1.5.1 Регистры и адреса регистров конфигурации приведены таблице 5.

Таблица 5 – Регистры и адреса регистров конфигурации

Адрес	Имя	Описание
0x001C	Time _{LOW}	младшие 16-бит регистра времени
0x001D	Time _{HIGH}	старшие 16-бит регистра времени
0x001E	Time _{msec}	миллисекунды
_		-
0x0102	Passlow	младшие 16-бит регистра ввода пароля
0x0103	Pass _{HIGH}	старшие 16-бит регистра ввода пароля
0x0104	cmd_PrmRW	регистр команды чтения/записи программы уставок
0x0105	ActivePrmIndex	номер активной программы уставок
0x0106	FuncEnable	регистр программной остановки/запуска функций
- 0.100	т 1	- VOLCON UN VOTTOROVA D DODVOTTORA DEPO
0x0120	prm_Index	номер пр. уставок, в регистрах prm
0x0121	prm_F ₁	"F<" – частота срабатывания АЧР-1
0x0122	prm_dF ₁	"Блокир. по dF/dt>" – блок. срабатывания AЧР-1
0x0123	prm_T ₁	"Тачр-1" – задержка срабатывания АЧР-1
0x0124	prm_F _{2S}	"Гпуска<" – частота пуска АЧР-2
0x0125	prm_F _{2R}	" Гвозвр.> " – частота возврата АЧР-2
0x0126	prm_U ₂	" Uачр-н< " – напряжение пуска АЧР-2
0x0127	prm_T ₂	"Тачр-2" – задержка срабатывания АЧР-2
0x0128	prm_T _{2a}	"Тачр-н" – задержка срабатывания АЧР-Н
0x0129	prm_F ₃	"F<" – частота разрешения АЧР-С
0x012A	prm_dF ₃	"dF/dt>" – скорость снижения частоты
0x012B	prm_T ₃	"Тачр-с" – задержка срабатывания АЧР-С
0x012C	prm_U _{4S}	"U<" – напряжение пуска АОСН
0x012D	prm_dU ₄	"dU/dt>" – скорость падения напряжения
0x012E	prm_zero	резерв – рекомендуется записывать ноль
0x012E	prm_T ₄	"Таосн" – задержка срабатывания АОСН
0x0130	prm_F ₅	"F>" – частота возврата алгоритма ЧАПВ
0x0131	prm_U ₅	" Uчапв> " – напряжение возврата алгоритма ЧАПВ
0x0132	prm_T ₅	"Тчапв" – задержка срабатывания ЧАПВ
0x0133		
 0x013D	prm_reserve	= 0xFFFF
0x013E	prm_Sx	S ₁ S ₉ ,S ₁₅ ,S ₁₆ – программные ключи
0x013F	PrmCfgStatus	регистр статуса
OVOIDE	Timeignatus	pernerp craryea

Примечание: утолщённым шрифтом выделены адреса регистров, запись в которые защищена паролем.

1.5.2 Формат регистров времени Тіте представлен в таблице 6.

Таблица 6 – Регистр времени Тіте

Имя	Разрядность, бит	Разрядность, бит Формат	
Time _{LOW}	16	целое без знака	1 c
Time _{HIGH}	16	целое без знака	2^{16} c
Time _{msec}	16	целое без знака	0,001 c

Регистр времени Тіте является составным. Доступ к нему осуществляется посредством двух отдельных регистров Тіте_{LOW} и Тіте_{HIGH}. Время в УАЧР представлено как 32-битное целое (регистр Тіте) число секунд прошедшее с момента "00:00:00 01.01.2000".

Запись в составной регистр времени Time буферизуется. При записи в регистр Time_{LOW} записывемое значение сохраняется в промежуточном буфере. При записи в регистр Time_{HIGH} встроенные часы обновляются согласно записанному в регистр Time количеству секунд.

Чтение составного регистра Time не буферизуется. Поэтому чтение регистров Time_{LOW} и Time_{HIGH} необходимо осуществлять в рамках одного запроса. Если значения этих регистров прочитаны при помощи двух отдельных последовательных запросов, то полученное составное значение регистра времени Time может быть некорректно.

Регистр $Time_{msec}$ хранит количество миллисекунд. Запись в регистр $Time_{msec}$ игнорируется.

1.5.3 Pass — регистр ввода пароля. По умолчанию в УАЧР прописан пароль, совпадающий с его серийным номером. Пароль состоит из восьми цифр, разбитых на две части: по четыре цифры в каждой. Части рассматривается отдельно. Например, заводской пароль УАЧР с заводским номером №00112345 будет состоять из двух частей 0011 = 0×000внідн и 2345 = 0×0929Low. После ввода пароля (записи корректного значения в регистр Pass) УАЧР позволяєт выполнить только одну защищённую операцию записи. Таким образом, необходимо выполнять запись в регистр Pass перед каждой операцией записи в любой из защищённых паролем регистров: cmd PrmRW, ActivePrmIndex, FuncEnable;

 $1.5.4~{\rm cmd_PrmRW}$ — регистр подачи команды на чтение/запись программы уставок. При чтении регистра всегда возвращается значение $0 \times {\rm FFFF}$.

Запись в регистр ключа $0 \times 720 i$ (где i = 0...8) инициирует операцию чтения соответствующей программы уставок из энергонезависимой памяти в буферную (буферная память доступна для чтения/записи посредством регистров prm_...).

Запись в регистр ключа $0 \times 770 i$ (где i = 0...8) инициирует операцию записи соответствующей программы уставок из буферной памяти в энергонезависимую. Операция записи доступна только после вывода УАЧР из работы (см. регистр FuncEnable), а также требует предварительного ввода пароля (см. регистр Pass).

- 1.5.5 ActivePrmIndex регистр номера активной программы уставок:
- 1...8 программа уставок из энергонезависимой памяти;
- -0 тестовая программа уставок (временная, без занесения в энергонезависимую память).

Запись в регистр является командой на смену активной программы уставок. Запись доступна только после вывода УАЧР из работы (см. регистр FuncEnable), а также требует предварительного ввода пароля (см. регистр Pass).

- 1.5.6 FuncEnable регистр программной остановки/запуска функций. Настройка УАЧР осуществляется по схеме "остановка-настройка-запуск". При чтении регистра возвращается одно из двух возможных значений:
 - 0, если УАЧР выведен из работы (программная остановка функций);
 - 1, если УАЧР введен в работу (программный запуск функций).

При записи в регистр ключа 0×4944 происходит остановка функций. Остановка возможна только при условии возврата всех функций. При записи в регистр ключа $0\times4E45$ происходит запуск функций. Запись в регистр требует предварительного ввода пароля (см. регистр Pass).

- 1.5.7 prm_Index регистр номера программы уставок, находящейся в буферной памяти. Регистр хранит номер уставки, прочитанной в буферную память, или записанной в неё (в зависимости от того, какая операция была последней). Запись в регистр игнорируется.
- $1.5.8 \ \text{prm}_\text{F}_1$ регистр частоты срабатывания АЧР-1. Пороговая частота выражена в сотых долях герца и представлена как значение без знака. Допустимые значения: от 4500 до 5100, что соответствует диапазону от 45,00 до 51,00 Гц.
- $1.5.9 \ prm_dF_1$ регистр блокировки срабатывания AЧР-1. Пороговая скорость снижения частоты выражена в десятых долях герца за секунду и представлена как значение со знаком. Допустимые значения: от минус 200 до минус 1, что соответствует диапазону от минус 0,1 до минус 20,0 Γ ц/с.
- $1.5.10 \ \text{prm_T}_1$ регистр задержки срабатывания АЧР-1. Время задержки срабатывания выражено в сотых долях секунды и представлено как значение без знака. Допустимые значения: от 8 до 50, что соответствует диапазону от 0,08 до 0,50 с.
- $1.5.11~\rm prm_F_{2S}$ регистр частоты пуска АЧР-2. Пороговая частота выражена в сотых долях герца и представлена как значение без знака. Допустимые значения: от 4500 до 5100, что соответствует диапазону от 45,00 до 51,00 Γ ц.
- $1.5.12~prm_F_{2R}$ регистр частоты возврата АЧР-2. Пороговая частота выражена в сотых долях герца и представлена как значение без знака. Допустимые значения: от 4500 до 5100, что соответствует диапазону от 45,00 до 51,00 Γ ц.
- $1.5.13 \ \mathrm{prm_U_2}$ регистр напряжение пуска АЧР-2. Пороговое напряжение выражено в целых вольтах и представлено как значение без знака. Допустимые значения для 100 В модификации: от 50 до 110, что соответствует диапазону от 50 до 110 В. Допустимые значения для 380 В модификации: от 190 до 418, что соответствует диапазону от 190 до 418 В.
- $1.5.14 \ \text{prm}_{\text{T}2}$ регистр задержки срабатывания АЧР-2. Время задержки срабатывания выражено в сотых долях секунды и представлено как значение без знака. Допустимые значения: от 8 до 9999, что соответствует диапазону от 0,08 до 99,99 с.
- $1.5.15 \text{ prm}_{\text{T}_{2a}}$ регистр задержки срабатывания АЧР-Н. Время задержки срабатывания выражено в сотых долях секунды и представлено как значение без знака. Допустимые значения: от 8 до 9999, что соответствует диапазону от 0,08 до 99,99 с.

- $1.5.16 \text{ prm}_F_3$ регистр частоты разрешения АЧР-С. Пороговая частота выражена в сотых долях герца и представлена как значение без знака. Допустимые значения: от 4500 до 5100, что соответствует диапазону от 45,00 до 51,00 Γ ц.
- $1.5.17 \ prm_dF_3$ регистр скорости снижения частоты AЧР-С. Пороговая скорость снижения частоты выражена в десятых долях герца за секунду и представлена как значение со знаком. Допустимые значения: от мину 1 до минус 200, что соответствует диапазону от минус $0.1 \ до \ muhyc \ 20.0 \ \Gamma u/c$.
- $1.5.18 \ prm_T_3$ регистр задержки срабатывания АЧР-С. Время задержки срабатывания выражено в сотых долях секунды и представлено как значение без знака. Допустимые значения: от 8 до 100, что соответствует диапазону от 0,08 до 1,00 с.
- $1.5.19~\rm prm_U_{4S}$ регистр напряжения пуска АОСН. Пороговое напряжение выражено в целых вольтах и представлено как значение без знака. Допустимые значения для $100~\rm B$ модификации: от $50~\rm do$ 100, что соответствует диапазону от $50~\rm do$ $100~\rm B$. Допустимые значения для $380~\rm B$ модификации: от $190~\rm do$ 380, что соответствует диапазону от $190~\rm do$ $380~\rm B$.
- $1.5.20~\rm prm_dU_4$ регистр скорости падения напряжения. Пороговая скорость снижения напряжения выражена в целых вольтах за секунду и представлена как значение со знаком. Допустимые значения: от минус 2 до минус 30, что соответствует диапазону от минус 2 до минус 30 В/с.
- 1.5.21 prm_zero регистр соответствует зафиксированному параметру (константе). Пороговое напряжение выражено в целых вольтах и представлено как значение без знака. Регистр может принимать единственное значение: 90 (для модификации с Uн=100 B) и 342 (для модификации с Uн=380 B), что соответствует 90 % номинального напряжения. Любое значение, записанное в этот регистр, автоматически подменяется соответствующей константой. В этот регистр рекомендуется записывать содержащуюся в нём константу или ноль.
- 1.5.22 prm_T₄ регистр задержки срабатывания АОСН. Время задержки срабатывания выражено в сотых долях секунды и представлено как значение без знака. Допустимые значения: от 8 до 9999, что соответствует диапазону от 0,08 до 99,99 с.
- $1.5.23 \ prm_F_5$ регистр частоты возврата алгоритма ЧАПВ. Пороговая частота выражена в сотых долях герца и представлена как значение без знака. Допустимые значения: от 4900 до 5100, что соответствует диапазону от 49,00 до 51,00 Γ ц.
- $1.5.24~\rm prm_U_5$ регистр напряжения возврата алгоритма ЧАПВ. Пороговое напряжение выражено в целых вольтах и представлено как значение без знака. Допустимые значения для $100~\rm B$ модификации: от $70~\rm до~100$, что соответствует диапазону от $70~\rm дo~100~\rm B$. Допустимые значения для $380~\rm B$ модификации: от $266~\rm дo~380$, что соответствует диапазону от $266~\rm do~380~\rm B$.
- $1.5.25 \text{ prm}_{-}T_5$ регистр задержки срабатывания ЧАПВ. Время задержки срабатывания выражено в сотых долях секунды и представлено как значение без знака. Допустимые значения: от 8 до 12000, что соответствует диапазону от 0,08 до 120,00 с.

1.5.26 prm_Sx – регистр программных ключей рассматривается как набор битов:

```
✓ бит: 0,
                     маска: 0x0001,
                                             S<sub>1</sub> - "Ввод АЧР-1"
✓ бит: 1,
                                             S<sub>2</sub> – "Ввод АЧР-2"
                     маска: 0x0002,
✓ бит: 2.
                                             S<sub>3</sub> – "Ввод АЧР-С"
                     маска: 0×0004.
✓ бит: 3,
                                             S<sub>4</sub> – "Ввод АОСН"
                     маска: 0x0008,
✓ бит: 4,
                                             S<sub>5</sub> – "Ввод ЧАПВ"
                     маска: 0х0010,
✓ бит: 5,
                                             S<sub>6</sub> - "Уск. по U"
                     маска: 0x0020,
✓ бит: 6,
                                             S_7 – "Блокир. по dF/dt"
                     маска: 0x0040,
✓ бит: 7.
                                             S_8 — "Контроль dU/dt"
                     маска: 0х0080.
✓ бит: 8.
                     маска: 0х0100,
                                             S_9 – "Контроль U"
✓ биты: 9-13,
                     маска: 0х3Е00,
                                             ноль (резерв)
✓ бит: 14.
                                             S<sub>15</sub> – "Разреш. □/Блокир. ☑"
                     маска: 0х4000,
✓ бит: 15.
                                             S<sub>16</sub> − "Запрет □/Разреш. ☑"
                     маска: 0х8000.
```

- 1.5.27 PrmCfgStatus регистр статуса. Запись в регистр игнорируется. Содержит биты состояния автомата чтения/записи буферной памяти (группы регистров с префиксом prm_...) из/в энергонезависимую память:
 - бит 0: статус операции чтения/записи программы уставок (регистров prm ...);
 - бит 1: резерв;
 - бит 2: признак обращения к энергонезависимой памяти (одиночная операция);
 - бит 3: резерв;
 - бит 4: признак обращения к энергонезависимой памяти (пакетная операция);
 - − биты 5 − 15: резерв.

Признаком завершения операции обращения к энергонезависимой памяти служит сброс в ноль битов 2 и 4. Перед началом новой операции необходимо убедиться, что все предыдущие операции завершены — биты 2 и 4 сброшены в ноль. Признаком успешности операции записи/чтения служит установка в единицу бита 0. Сразу после операции чтения и непосредственно перед операцией записи данные подвергаются проверке на корректность. Если данные не прошли проверку на корректность, то бит статуса (бит 0) сбрасывается.

- 1.5.28 Значение 0×FFFF соответствует NaN (недействительное значение). При записи в регистры значения NaN содержимое буферной памяти не изменяется (запись в регистр игнорируется). Это свойство может быть использовано при записи нескольких регистров одной командой для указания тех регистров, значения которых не должны быть изменены.
 - 1.5.29 Алгоритм чтения программы уставок:
- 1) ожидание готовности к новой операции сброса в ноль битов 2 и 4 регистра PrmCfgStatus;
- 2) инициирование операции чтения уставки из энергонезависимой памяти в буферную (см. регистр cmd_PrmRW);
 - 3) ожидание завершения операции сброса в ноль битов 2 и 4 регистра PrmCfgStatus;

- 4) проверка успешности выполнения операции и корректности данных бита 0 регистра PrmCfgStatus;
 - 5) чтение данных из группы регистров с префиксом prm_....
 - 1.5.30 Алгоритм записи программы уставок:
- 1) ожидание готовности к новой операции сброс в ноль битов 2 и 4 регистра PrmCfgStatus;
 - 2) запись данных в группу регистров с префиксом prm_...;
- 3) инициирование операции записи уставки из буферной памяти в энергонезависимую (см. регистр cmd_PrmRW);
 - 4) ожидание завершения операции сброса в ноль битов 2 и 4 регистра PrmCfgStatus;
- 5) проверка успешности выполнения операции и корректности данных бита 0 регистра PrmCfgStatus.

1.6 Регистры, доступные только для чтения

1.6.1 Регистры и адреса регистров, доступных только для чтения, приведены в таблице 7. Регистры содержат результаты измерений и индивидуальные характеристики УАЧР.

Таблица 7 – Регистры, доступные только для чтения

Адрес	Имя	Описание			
0x0000	Volt	Напряжение в вольтах (грубо), без знака			
0x0001	dVolt	Изменение напряжения в вольтах за секунду (грубо), со знаком			
0x0002	Freq	Частота в сотых долях герца, без знака			
0x0003	dFreq	Изменение частоты в десятых долях герца за секунду, со знаком			
0x0004	func_Start	Состояние функций (признак пуска)			
0x0005	func_Exec	Состояние функций (признак срабатывания)			
0x0006	Inputs	Состояние дискретных входов			
0x0007	Outputs	Состояние выходных реле			
0x0008	adc_Volt	Напряжение в условных единицах, без знака			
0x0009	adc_dVolt	Изменение напряжения за секунду, со знаком			
0x000A	adc_Ku1	Коэффициент приведения условных единиц к вольтам, множитель			
	auc_Ku1	(без знака)			
0x000B	adc_Ku2	Коэффициент приведения условных единиц к вольтам, делитель			
	auc_Kuz	(без знака)			
0x000C	резерв	0xFFFF			
0x000D	Nominal	Номинальное напряжение в вольтах			
0x000E	Blocks	Состояние блокировок			
-	-	-			
0x0300	SerialNum	Серийный номер прибора			
0x0301	Schanvulli	Серииный помер приоора			
0x0302	HardID	Идентификатор аппаратной части			
0x0303 0x0304		·· 1 1			
0x0304 0x0305	SoftID	Версия ФПО			

- 1.6.2 Регистр func_Start содержит следующие биты:
- -0 признак пуска Тачр-1;
- -1 признак пуска Тачр-2;
- -2 признак пуска АЧР-С;
- -3 признак пуска Таосн;
- 4 признак пуска Тчапв;
- 5 признак пуска Тачр-н.
- 1.6.3 Регистр func_Exec содержит следующие биты:
- -0 признак срабатывания АЧР-1;
- 1 признак срабатывания АЧР-2;
- 2 признак срабатывания АЧР-С;
- 3 признак срабатывания AOCH;
- 4 признак срабатывания ЧАПВ.

- 1.6.4 Inputs состояние дискретных входов. Включает следующие биты:
- 0 разрешающий сигнал на входе "РАЗРЕШЕНИЕ";
- 1 разрешающий сигнал на входе "ЗАПРЕТ ЧАПВ".
- 1.6.5 Outputs состояние выходных реле. Включает следующие биты:
- 0 разрешающий сигнал на выходе "ЗАПРЕТ ВКЛ.";
- 1 разрешающий сигнал на выходе "ОТКАЗ УСТР-ВА";
- 2 активный сигнал на выходе "ОТКЛ. НАГР.";
- 3 активный сигнал на выходе "ВКЛ. НАГР.".
- 1.6.6 Blocks состояние блокировок УАЧР для активной программы утавок. Позволяет проконтролировать текущее состояние алгоритма работы УАЧР. Включает следующие биты:
 - -0 ключ S_1 ;
 - -1 ключ S_2 ;
 - -2 ключ S_3 ;
 - -3 ключ S_4 ;
 - -4 ключ S_5 ;
 - -5 сигнал на входе "РАЗРЕШЕНИЕ" с учётом ключа S_{15} ;
 - -6 сигнал на входе "ЗАПРЕТ ЧАПВ" с учётом ключа S_{16} ;
 - 7 соответствие уровня напряжения и частоты рабочему диапазону;
 - -8 режим программной остановки/работы (см. регистр FuncEnable);
 - 9 блокирование работы ЧАПВ при "ОТКЛ. НАГР." по команде;
 - 10 возврат всех функций;
 - 11 блокировка №1 на внешне управление реле "ВКЛ. НАГР.";
 - 12 блокировка №2 на внешне управление реле "ВКЛ. НАГР.";
 - 13 блокировка работы ЧАПВ (пока не сработает одна из функций разгрузки);
 - 14 блокировка функций разгрузки (пока не сработает ЧАПВ);
 - 15 всегда ноль.

1.7 Поясняющие примеры

1.7.1 Опрос состояния

Рассмотрим пример опроса состояния УАЧР (MODBUS RTU):

запрос 1:01 08 0000 801Aответ 1:01 08 0000 801Aзапрос 2:01 04 0000 000E 71CE

OTBET 2: 01 04 1C 00B4 0000 1388 0000 0000 0003 0003 01CB 0000 000B 001C

FFFF 017C 74CA

Запрос 1: проверка связи при помощи диагностической функции 08.

Запрос 2: чтение регистров 0х0000 - 0х0000 (таблица 8).

Таблица 8 – Значение регистров при опросе состояния.

Адрес	Имя	Формат	Код	Значение	Результат
0x0000	Volt	без знака	0x00B4	180	180,0
0x0001	dVolt	со знаком	0x0000	0	0,0
0x0002	Freq	без знака	0x1388	5000	50,00
0x0003	dFreq	со знаком	0x0000	0	0,0
0x0004	func_st	без знака	0x0000	0	прим.1
0x0005	func_ex	без знака	0x0000	0	прим.2
0x0006	inputs	без знака	0x0003	3	прим.3
0x0007	outputs	без знака	0x0003	3	прим.4
0x0008	adc_V	без знака	0x01CB	459	180,3
0x0009	adc_dV	со знаком	0x0000	0	0,0
0x000A	adc_Ku1	без знака	0x000B	11	-
0x000B	adc_Ku2	без знака	0x001C	28	-
0x000C	-	-	0xFFFF	-	-
0x000D	Nominal	без знака	0x017C	380	380,0

Примечания:

- 1 Нулевое значение регистра func_Start означает, что пуска функций нет.
- 2 Нулевое значение регистра func_Exec означает, что срабатываний функций нет.
- 3 На обоих дискретных входах присутствует разрешающий сигнал: логический ноль на входе "ЗАПРЕТ ЧАПВ" и логическая единица на входе "РАЗРЕШЕНИЕ".

4 Реле:

- -1 == (outputs & 0x0001) pene "ЗАПРЕТ ВКЛ." замкнуто;
- -1 == (outputs & 0x0002) pene "OTKA3 УСТР-ВА" разомкнуто;
- -0 == (outputs & 0x0004) pene "OTKЛ. НАГР." разомкнуто;
- -0 == (outputs & 0x0008) pene "ВКЛ. НАГР." разомкнуто.

Другой возможный вариант ответа (таблица 9).

Таблица 9 – Значение регистров при опросе состояния.

Адрес	Имя	Формат	Код	Значение	Результат
0x0000	Volt	без знака	0x0108	264	264,0
0x0001	dVolt	со знаком	0x0000	0	0,0
0x0002	Freq	без знака	0x1388	5000	50,00
0x0003	dFreq	со знаком	0x0000	0	0,0
0x0004	func_st	без знака	0x0808	2056	прим.1
0x0005	func_ex	без знака	0x0008	8	прим.2
0x0006	inputs	без знака	0x0003	3	прим.3
0x0007	outputs	без знака	0x0007	7	прим.4
0x0008	adc_V	без знака	0x02A1	673	264,4
0x0009	adc_dV	со знаком	0x0000	0	0,0
0x000A	adc_Ku1	без знака	0x000B	11	-
0x000B	adc_Ku2	без знака	0x001C	28	-
0x000C	-	-	0xFFFF	-	-
0x000D	Nominal	без знака	0x017C	380	380,0

Примечания:

- 1 Значение регистра func_Start означает:
- бит 0 признак пуска $T_{A4P-1} = false;$
- бит 1 признак пуска $T_{A4P-2} = false;$
- бит 2 признак пуска T_{A4P-C} = false;
- бит 3 признак пуска T_{AOCH} = true;
- бит 4 признак пуска $T_{\text{ЧАПВ}}$ = false;
- бит 5 признак пуска $T_{A^{\text{ЧР-H}}} = \text{false}.$
- 2 Значение регистра func_Exec означает:
 - бит 0 срабатывание AЧР-1 = false;
 - бит 1 срабатывание AЧР-2 = false;
 - бит 2 срабатывание AЧР-С = false;
 - бит 3- срабатывание AOCH = true;
 - бит 4 срабатывание ЧАПВ = false.
- 3 На обоих дискретных входах присутствует разрешающий сигнал: логический ноль на входе "запрет ЧАПВ" и логическая единица на входе "РАЗРЕШЕНИЕ".

4 Реле:

- -1 == (outputs & 0x0001) pene "ЗАПРЕТ ВКЛ." замкнуто;
- -1 == (outputs & 0x0002) pene "OTKA3 УСТР-ВА" разомкнуто;
- -1 == (outputs & 0x0004) реле "ОТКЛ. НАГР." замкнуто;
- -0 == (outputs & 0x0008) pene "ВКЛ. НАГР." разомкнуто.

c

	2 Параметры п	протокола М	ЭК 60	870-5-101	, поддерживаем	лые У	УАЧР
	2.1 Основные г	оложения					
ГОСТ	2.1.1 Данный Р МЭК 60870-5-	протокол 101-2006.	В	УАЧР	реализован	В	соответствии
	2.2 Система ил	и устройство	0				
	 2.2.1 Определени □ – Определени □ – Определени ⊠ – Определени 	ие системы ие контролиру	ующей	і станции			
	2.3 Конфигурал	ция сети					
	 2.3.1 Используе □ Точка-точка □ Радиальная □ Магистраль □ Многоточёча 	а точка-точка ная					
	2.4 Физический	й уровень					
	2.4.1 Скорости и □ – 2400 бит/с □ – 4800 бит/с ⊠ – 9600 бит/с ⊠ – 19200 бит/с ⊠ – 38400 бит/с □ – 56000 бит/с □ – 57600 бит/с		ных				

□ – 230400 бит/с

 \Box — 64000 бит/с \Box — 76800 бит/с \Box — 115200 бит/с

- **2.5 Канальный уровень** 2.5.1 Передача по каналу
- □ Балансная передача
- ⊠ Небалансная передача
- 2.5.2 Адресное поле канального уровня
- \boxtimes Отсутствует
- ⊠ Один байт
- ⊠ Два байта
- \boxtimes Структурированное
- ⊠ Неструктурированное

- 2.5.3 Длина кадра
- 261 Максимальная длина L (в направлении управления)
- 261 Максимальная длина L (в направлении контроля)

Время, в течение которого разрешаются повторения (Тгр) не ограничивается.

 \boxtimes — Стандартное назначение ASDU к сообщениям класса 2 используется согласно таблице 10.

Таблица 10 – Стандартное назначение ASDU к сообщениям класса 2

Идентификатор типа	Причина передачи
1, 3, 7	<5>,<20><36>
11	<1>,<5>,<20><36>
30, 31, 35	<3>,<11>
45	<6>,<7>,<10>
49, 51, 103, 104	<6>,<7>
100	<6>,<7>,<8>,<9>,<10>
102	<5>

Таблица 11 – Специальное назначение ASDU к сообщениям класса 2

Идентификатор типа	Причина передачи				
45, 59, 51, 100, 102, 103, 104	<45>,<46>,<47>				

2.6 Прикладной уровень

- 2.6.1 Режим передачи прикладных данных
- В ГОСТ Р МЭК 60870-5-101-2006 используется только режим 1 (младший байт передаётся первым).
 - 2.6.2 Общий адрес ASDU
 - ⊠ Один байт
 - ⊠ Два байта
 - 2.6.3 Адрес объекта информации
 - ⊠ Один байт
 - ⊠ Два байта
 - ⊠ Три байта
 - ⊠ Структурированный
 - ⊠ Неструктурированный
 - 2.6.4 Причина передачи
 - ⊠ Один байт
 - □ Два байта (адрес источника не используется и устанавливается в 0)
 - 2.6.5 Выбор стандартных ASDU. Информация о процессе в направлении контроля
 - \boxtimes <1>:= одноэлементная информация M_SP_NA_1
 - \square <2> := одноэлементная информация с меткой времени M_SP_TA_1

⊠ <3> :=	двухэлементная информация	M_DP_NA_1
□ <4> :=	двухэлементная информация с меткой времени	M_DP_TA_1
□ <5> :=	информация о положении отпаек	M_ST_NA_1
□ <6> :=	информация о положении отпаек с меткой времени	M_ST_TA_1
⊠ <7> :=	строка из 32 бит	M_BO_NA_1
□ <8> :=	строка из 32 бит с меткой времени	M_BO_TA_1
□ <9> :=	значение измеряемой величины, нормализованное	M_ME_NA_1
□ <10> :=	значение измеряемой величины, нормализованное	M_ME_TA_1
□ <10> .=	с меткой времени	WI_WIL_IA_I
⊠ <11> :=	-	M ME ND 1
	значение измеряемой величины, масштабированное	M_ME_NB_1
□ <12> :=	значение измеряемой величины, масштабированное	M_ME_TB_1
П 10	с меткой времени	
□ <13> :=	значение измеряемой величины, короткий формат	M_ME_NC_1
	с плавающей запятой	
□ <14> :=	значение измеряемой величины, короткий формат	M_ME_TC_1
	с плавающей запятой с меткой времени	
□ <15> :=	интегральная сумма	M_IT_NA_1
□ <16> :=	интегральная сумма с меткой времени	M_IT_TA_1
□ <17> :=	информация о работе релейной защиты	M_EP_TA_1
	с меткой времени	
□ <18> :=	упакованная информация о срабатывании пусковых	M_EP_TB_1
	органов защиты с меткой времени	
□ <19> :=	упакованная информация о срабатывании выходных	M_EP_TC_1
	цепей защиты с меткой времени	
□ <20> :=	упакованная одноэлементная информация	M_PS_NA_1
	с указателем изменения состояния	
□ <21> :=	значение измеряемой величины, нормализованное	M_ME_ND_1
	без описателя качества	
⊠ <30> :=	одноэлементная информация с меткой времени	M_SP_TB_1
_ \30> .=	СР56Время2а	111_51 _12_1
⊠ <31> :=	двухэлементная информация с меткой времени	M_DP_TB_1
□ <i>\31</i> > .=	СР56Время2а	WI_DI _ID_I
□ <32> :=	•	M CT TD 1
□ <32>	информация о положении отпаек с меткой времени	M_ST_TB_1
□ .22.	СР56Время2а	M DO TD 1
□ <33> :=	строка из 32 бит с меткой времени СР56Время2а	M_BO_TB_1
□ <34> :=	значение измеряемой величины, нормализованное	M_ME_TD_1
	с меткой времени СР56Время2а	
⊠ <35> :=	значение измеряемой величины, масштабированное	M_ME_TE_1
	с меткой времени СР56Время2а	
□ <36> :=	значение измеряемой величины, короткий формат	M_ME_TF_1
	с плавающей запятой с меткой времени СР56Время2а	
□ <37> :=	интегральная сумма с меткой времени СР56Время2а	M_IT_TB_1
□ <38> :=	информация о работе релейной защиты с меткой	M_EP_TD_1
	времени СР56Время2а	

□ <39> :=	упакованная информация о срабатывании пусковых органов защиты с меткой времени СР56Время2а	M_EP_TE_1
□ <40> :=	упакованная информация о срабатывании выходных цепей защиты с меткой времени СР56Время2а	M_EP_TF_1
2.6.6 Инфор	мация о процессе в направлении управления	
⊠ <45> :=	однопозиционная команда	C_SC_NA_1
□ <46> :=	двухпозиционная команда	C_DC_NA_1
□ <47> :=	команда пошагового регулирования	C_RC_NA_1
□ <48> :=	команда уставки, нормализованное значение	C_SE_NA_1
⊠ <49> :=	команда уставки, масштабированное значение	C_SE_NB_1
□ <50> :=	команда уставки, короткий формат с	C_SE_NC_1
	плавающей запятой	
⊠ <51> :=	строка из 32 бит	C_BO_NA_1
2.6.7 Инфор	мация о системе в направлении контроля	
□ <70>:=	конец инициализации	M_EI_NA_1
2.6.8 Инфор	мация о системе в направлении управления	
⊠ <100> :=	команда опроса	C_IC_NA_1
□ <101> :=	команда опроса счётчиков	C_CI_NA_1
⊠ <102> :=	команда чтения	C_RD_NA_1
⊠ <103> :=	команда синхронизации часов	C_CS_NA_1
⊠ <104> :=	команда тестирования	C_TS_NA_1
□ <105> :=	команда сброса процесса в исходное состояние	C_RP_NA_1
□ <106> :=	команда определения запаздывания	C_CD_NA_1
2.6.9 Переда	ча параметра в направлении управления	
□ <110> :=	параметр измеряемой величины,	P_ME_NA_1
	нормализованное значение	
□ <111> :=	параметр измеряемой величины,	P_ME_NB_1
	масштабированное значение	
□ <112> :=	параметр измеряемой величины,	P_ME_NC_1
	короткий формат с плавающей запятой	
□ <113> :=	параметр активации	P_AC_NA_1
2.6.10 Перес	ылка файла	
□ <120> :=	файл готов	F_FR_NA_1
□ <121> :=	секция готова	F_SR_NA_1
□ <122> :=	вызов директории, выбор файла, вызов файла,	F_SC_NA_1
	вызов секции	
□ <123> :=	последняя секция, последний сегмент	F_LS_NA_1
□ <124> :=	подтверждение приёма файла,	F_AF_NA_1
	подтверждение приёма секции	
□ <125> :=	сегмент	F_SG_NA_1
□ <126> :=	директория	F_DR_TA_1

2.6.11 Назначение идентификатора типа и причины передачи приведены в таблице 12.

Таблица 12 – Идентификатор типа и причина передачи

Идентификатор	ПФИК	Причина передачи														
типа	1	2	3	4	5	6	7	личи 8	на п 9	сред 10	11	12	13	20-	37-	44-
типа	1		3	4		U	/	0	9	10	11	12	13	36	41	47
<1> M_SP_NA_1					X									X	11	1,
<1> M_SI_TA_1 <2> M_SP_TA_1	_				71									71		
<3> M_DP_NA_1					X									X		
<4> M_DP_TA_1					7.											
<5> M_ST_NA_1																
<6> M_ST_TA_1																
<7> M_BO_NA_1					X									X		
<8> M_BO_TA_1																
<9> M_ME_NA_1																
<10> M_ME_TA_1																
<11> M_ME_NB_1					X									X		
<12> M_ME_TB_1																
<13> M_ME_NC_1																
<14> M_ME_TC_1																
<15> M_IT_NA_1																
<16> M_IT_TA_1																
<17> M_EP_TA_1																
<18> M_EP_TB_1																
<19> M_EP_TC_1																
<20> M_PS_NA_1																
<21> M_ME_ND_1																
<30> M_SP_TB_1			X								X					
<31> M_DP_TB_1			X								X					
<32> M_ST_TB_1																
<33> M_BO_TB_1																
<34> M_ME_TD_1																
<35> M_ME_TE_1			X								X					
<36> M_ME_TF_1																
<37> M_IT_TB_1																
<38> M_EP_TD_1																
<39> M_EP_TE_1																
<40> M_EP_TF_1	_															
<45> C_SC_NA_1						X	X			X						X
<46> C_DC_NA_1																
<47> C_RC_NA_1																
<48> C_SE_NA_1																
<49> C_SE_NB_1						X	X									X
<50> C_SE_NC_1						**	**									
<51> C_BO_NA_1						X	X									X
<70> M_EI_NA_1																

2.7 Основные прикладные функции

	2.7.1 Инициализация станции□ – Удаленная инициализация вторичной станци	ии						
	2.7.2 Циклическая передача данных							
	2.7.3 Процедура чтения⊠ – Процедура чтения							
	2.7.4 Спорадическая передача⊠ – Спорадическая передача							
	2.7.5 Дублированная передача объектов инфор	рмации при спорадической причине						
переда	ачи							
	□ – Одноэлементная информация M_SP_NA_1, M_SP_TA_1, M_SP_TB_1, N	M_PS_NA_1						
	□ – Двухэлементная информация							
	$M_DP_NA_1, M_DP_TA_1, M_DP_TB_1$							
	□ – Информация о положении отпаек							
	M_ST_NA_1, M_ST_TA_1, M_ST_TB_1							
	□ – Строки из 32 бит							
	M_BO_NA_1, M_BO_TA_1, M_BO_TB_1							
	 □ – Измеряемое значение, нормализованное 	1 M ME TD 1						
	M_ME_NA_1, M_ME_TA_1, M_ME_ND_	_1, M_ME_1D_1						
	\square – Измеряемое значение, масштабированное M_ME_NB_1, M_ME_TB_1, M_ME_TE_1	1						
	М_МЕ_NВ_1, М_МЕ_ТВ_1, М_МЕ_ТЕ_5□ – Измеряемое значение, короткий формат с пл							
	M_ME_NC_1, M_ME_TC_1, M_ME_TF_1							
	2.7.6 Опрос станции⊠ – Общий							
	•	⊠ – Группа 13						
		Группа 13□ Группа 14						
		Б – Группа 15						
	Каждый объект информации входит во все групп	ы. Таким образом опрос любой группы						
совпад	дает с общим опросом.							
	2.7.7 Синхронизация времени							
	⊠ – Синхронизация времени							
	□ – Использование дней недели							
	□ – Использование RES1, GEN (замена метки вр	ремени есть/нет)						
	□ – Использование флага SU (летнее время)							

	2.7.8 Передача команда
	⊠ – Прямая передача команд
	⊠ – Прямая передача команд уставки
	□ – Передача команд с предварительным выбором
	□ – Передача команд уставки с предварительным выбором
	□ – Использование C_SE_ACTTERM
	□ – Нет дополнительного определения длительности выходного импульса
	□ – Короткий импульс (длительность определяется системным параметром на КП)
	□ – Длинный импульс (длительность определяется системным параметром на КП)
	□ – Постоянный выход
	2.7.9 Передача интегральных сумм
	 □ – Режим А: Местная фиксация со спорадической передачей
	□ – Режим В: Местная фиксация с опросом счётчика
	T T T T T T T T T T T T T T T T T T T
	□ – Режим С: Фиксация и передача при помощи команд опроса счётчика
	 □ – Режим D: Фиксация командой опроса счётчика, фиксированные значения
сообш	даются спорадически
	□ – Считывание счётчика
	 □ – Фиксация счётчика без сброса
	□ – Фиксация счётчика со сбросом
	□ – Сброс счётчика
	□ – Общий запрос счётчиков
	□ – Запрос счётчиков группы 1
	□ – Запрос счётчиков группы 2
	□ – Запрос счётчиков группы 3
	□ – Запрос счётчиков группы 4
	2.7.10 Загрузка параметра
	 □ – Пороговое значение величины
	 ☐ – Коэффициент сглаживания
	 ☐ – Нижний предел для передачи значений измеряемой величины
	 □ – Верхний предел для передачи значений измеряемой величины
	2.7.11 Активация параметра
	 Активация/деактивация постоянной циклической или периодической передачи
адресс	ованных объектов
	2.7.12 Процедура тестирования
	⊠ – Процедура тестирования
	2.7.13 Пересылка файлов. Пересылка файлов в направлении контроля
	 □ – Прозрачный файл
	 □ – Передача данных о повреждениях от аппаратуры защиты
	L

 □ – Передача последовательности событий □ – Передача последовательности регистрируемых аналоговых величин
2.7.14 Пересылка файлов в направлении управления□ – Прозрачный файл
2.7.15 Фоновое сканирование□ – Фоновое сканирование
2.7.16 Получение задержки передачи□ – Получение задержки передачи

2.7.17 Объекты информации

Таблица 13 – Объекты информации

Адрес	ASDU	Имя	Описание
1	M_ME_NB_1	Nom	номинал, в вольтах
2	M_ME_NB_1	K _{U1}	множитель для перевода условных единиц в вольты
3	M_ME_NB_1	K_{U2}	делитель для перевода условных единиц в вольты
4	M_ME_NB_1	res	Резерв
5	M_ME_NB_1	U	напряжение, в условных единицах
6	M_ME_NB_1	ΔU	скорость изменения напряжения, условные единицы
7	M_ME_NB_1	F	частота, 10 ⁻² Гц
8	M_ME_NB_1	ΔF	скорость изменения частоты, 10-2 Гц/с
9	M_DP_NA_1 M_DP_TB_1	Fn1	состояние АЧР-1
10	M_DP_NA_1 M_DP_TB_1	Fn2	состояние АЧР-2
11	M_DP_NA_1 M_DP_TB_1	Fn3	состояние АЧР-С
12	M_DP_NA_1 M_DP_TB_1	Fn4	состояние АОСН
13	M_DP_NA_1 M_DP_TB_1	Fn5	состояние ЧАПВ
14	M_SP_NA_1 M_SP_TB_1	FnX_ena	состояние входного дискрета "РАЗРЕШЕНИЕ"
15	M_SP_NA_1 M_SP_TB_1	Fn5_dis	состояние входного дискрета "ЗАПРЕТ ЧАПВ"
16	M_SP_NA_1 M_SP_TB_1	rel_INHIB	состояние реле "ЗАПРЕТ ВКЛ."
17	M_SP_NA_1 M_SP_TB_1	rel_FAIL	состояние реле "ОТКАЗ УСТ-ВА"

Продолжение таблицы 13

Адрес	ASDU	Имя	Описание			
18	M_SP_NA_1 M_SP_TB_1	cls1_ovf	переполнение очереди данных класса 1			
19	M_DP_NA_1 M_DP_TB_1	rel_ON	состояние реле "ВКЛ. НАГР."			
20	M_DP_NA_1 M_DP_TB_1	rel_OFF	состояние реле "ОТКЛ. НАГР."			
21	M_BO_NA_1	SerNum	серийный номер			
22	M_ME_NB_1 M_ME_TE_1	PrmIndex	№ активной уставки			
23	M_SP_NA_1 M_SP_TB_1	InWork	состояние "программный старт/стоп"			
100	C_BO_NA_1	cmd_Psw	команда ввода пароля			
101	C_SC_NA_1	cmd_InWork	команда "программный старт/стоп"			
102	C_SE_NB_1	cmd_PrmIndex	команда выбора уставки			
103	C_SC_NA_1	cmd_rel_ON	команда управления реле "ВКЛ. НАГР."			
104	C_SC_NA_1	cmd_rel_OFF	команда управления реле "ОТКЛ НАГР."			

Лист регистрации изменений

	Но	мера лист	гов (стран	ниц)	Всего			
Изм.	изме- ненных	заме-	новых	аннули- рованных	листов (страниц) в докум.	№ докум.	Подп.	Дата